The Eagleson Institute is named in memory of the late John M. Eagleson, Jr., a man who was dedicated to life science engineering and safety. In the early 1960s, he played a key role in The Baker Company’s development of the original laminar flow Biological Safety Cabinet. After purchasing the company in 1966, he continued to lead Baker’s pioneering work in the advancement of Biological Safety Cabinets and Containment Technology. Jack was a strong proponent of sharing information, and teaching others. Whether in a formal training program or informal discussion, Jack liked to challenge the minds of his employees, colleagues, and others he met. These are the qualities on which the Eagleson Institute was founded, and for which the memory of Jack lives on.

Participants at Eagleson Institute seminars spend most of the time in small groups working on problem sets, discussing related topics, and most importantly participating in hands-on workshops. All of our seminars have carefully designed workshops where participants gain an in-depth understanding of class concepts and refine their technical and practical skills.
Effective Use of Class II Biological Safety Cabinets

This package includes a 17-minute video that uses an engaging mix of narration, live action, animation, and smoke demonstrations to explain how the biological safety cabinet functions, and how to work effectively and safely in it.

KEY TOPICS INCLUDE:
• How BSCs protect personnel, products, and the environment
• What a HEPA filter is and how it works
• The importance of airflow
• Preparing to work in a BSC
• Working safely in a BSC
• Cleaning the BSC

Safe Use of Chemical Fume Hoods

This DVD defines what a fume hood is and how to use it. Join Professor Fumér in this unique presentation as he points out the do’s & don’ts of working safely in a fume hood. Key concepts are illustrated through dramatic smoke demonstrations and schematic diagrams.

Biological Safety Cabinets: A Web-Based Training CD-ROM

Contains five interactive segments, including: Overview of Laboratory Equipment, How BSCs work, Types of BSCs, Safe and Effective Use of BSCs and Microbiological Testing of BSCs
Join us in Raleigh, NC, for the 16th annual “BSL3 Seminar Series.” Both courses will be able to take advantage of the state-of-the-art facilities at the North Carolina Public Health Lab.

BSL3 Facilities: Design, Construction and Beyond
APRIL 25-26, 2016

- Risk assessment as a BSL3 design driver
- Complexities of the design/construction/commissioning/verification processes
- BSL3 laboratory guidelines
- Primary containment equipment and exhaust needs
- Architectural planning issues
- Role of HVAC in containment
- Using airflow to control and remove airborne contaminants
- Designing for decon and waste management

Advanced BSL3 Work Practices and Procedures
APRIL 27-28, 2016

- Risk assessment as an ongoing process through the life of a BSL3 project
- Operational considerations for BSL3 facilities
- Selecting and maintaining Personal Protective Equipment (PPE)
- Ensuring safe operation of Biological Safety Cabinets
- Dealing with occupational health issues in BSL3 labs
- Planning for and responding to emergencies
- (Almost) painless laboratory inspections
- Ensuring biosecurity

Are you interested in:

- Enhancing your grasp of the senior level of CDC’s recent “Biosafety Laboratory Competency Guidelines”?
- Renovating an aging facility to meet new BSL3 requirements or building a new BSL3 lab?
- Experiencing creative training methods you can apply in your own facility?
- Learning more about the BMBL 6th edition guidelines on airflow reversals during HVAC failures and approaches to meet those guidelines?
- Reducing lab operation and maintenance costs without sacrificing safety?

What we offer:

A mix of case studies, lecture, demonstrations, facility tours, group exercises and hands-on workshops
Faculty who are lab design or biosafety experts as well as experienced instructors
Many structured opportunities to network and share challenges and solutions with instructors and fellow students

Who Should Attend?

Architects, biosafety professionals, certifiers, commissioning agents, design engineers, facility managers, health and safety professionals and laboratorians in leadership positions

Local Information & Lodging

The Seminar Series is held at the North Carolina State Public Health Lab in Raleigh, NC. A block of rooms has been held at the following hotel:

- Homewood Suites (Raleigh, NC) $124 / Night

www.eagleson.org/BSL3
Presented in Partnership with the Elizabeth R. Griffin Research Foundation. Sponsored by: American Association for Laboratory Animal Science (AALAS), American Biological Safety Association (ABSA) and American College of Occupational and Environmental Medicine (ACOEM).

Topics Include:

Featured Topic:
New Lentiviral Vector Exposure Guidelines

- CRISPR - Risks and Occupational Health Implications
- Infectious Agents Case Studies
- Retroviral and Vaccinia Vector Exposures
- Herpes B Update
- PDX and Other Human Materials in Animals
- Special Risk Situations Involving Animals
- Vaccines
- Sharing of Best Practices

Who Should Attend?

- Occupational medicine, infectious disease, and emergency physicians
- Physician assistants and nurse practitioners
- Occupational health nurses
- Biosafety professionals

Local Information & Lodging

Preventing and Treating Biological Exposures will be held at the InterContinental Steven F. Austin Hotel in Austin, TX. Blocks of rooms have been held at the rate of $229 / Night for Single / Double occupancy.

“Preventing and Treating Biological Exposures” is a unique event that provides an opportunity to examine the latest issues facing those who provide occupational medical services to laboratory personnel as well as network and develop long-lasting relationships with colleagues from around the country.
Advanced Certification
FEBRUARY 29 - MARCH 4, 2016 • MARCH 7-11, 2016 • SEPTEMBER 19-23, 2016

“The interaction between instructors and participants creates a fun and enthusiastic learning environment that goes beyond the basics needed for accreditation into relevant day-to-day application.” - Jim Wagner (Lead Instructor)

Course Description
This five-day advanced-level, personalized course teaches participants how to certify cabinets according to NSF/ANSI Standard 49. The subject matter is presented through a combination of lecture, discussion, problem-solving activities and certification labs. During the course, each participant identifies his or her own weaknesses and receives additional instruction in those areas.

Participants Will Learn
• To refine existing knowledge in preparation to take the written and practical NSF exams
• Current state of the art techniques for testing BSCs in accordance with Annex-F of NSF/ANSI Standard 49
• Application of other industry standards and guidelines on the testing of BSCs
• Current practices for the decontamination of BSCs
• Basics for troubleshooting BSCs
• An understanding of the fundamentals on which the principals of bio containment are based (HEPA filtration, airflow, and biosafety principals)

This Course is For
Certifiers, industrial hygienists, and safety officers desiring an in-depth course in BSC certification.

Instructor Team
The lead instructor for this program is Jim Wagner, President, Controlled Environment Consulting. Other instructors include: Ron Gingras, NSF-49 Accredited Certifier, Eagleson Institute; Aaron Johnson, Engineering Test Supervisor, Baker; Larry McCarthy, Product Design Engineer, Baker; Charles Pellegrini, Clean Air Director, Energy Plus Scientific.

Registration
Tuition of $1995 must be paid in full to guarantee a space in the class. Tuition includes: course manual, lunch each day, an Eagleson Institute certificate and a special class reception and dinner with plenty of time to network with peers and instructors. Tuition does not include NSF Exam fees.

Prerequisite: A basic knowledge of Biological Safety Cabinets and one year of experience testing BSCs.

Register online at www.eagleson.org/ADVANCED, or call (207) 490-1076 to register or request a registration form.

Local Information & Lodging
This class is held in our Sanford, Maine Training Facility. Blocks of rooms have been held at the following hotels:

- FEB 29 - MAR 4
 - Kennebunkport Inn / Boathouse
 - $85 / Night

- MAR 7-11
 - Kennebunkport Inn / Boathouse
 - $85 / Night

- SEP 19-23
 - Kennebunkport Inn / Boathouse
 - $121 / Night

Refer to PAGE 15 for more Local and Hotel Information.

 NSF Exam is Offered Immediately Following this Course. For More Information, contact NSF International
Certification of Sterile Compounding Facilities and Aseptic Isolators
MAY 16-20, 2016 • OCTOBER 24-28, 2016

“We all workshops are extremely useful and instructors were very willing to share real life working experiences and tips” - Former Course Participant

Course Description
This four and a half-day class uses lecture, hands-on workshops and group activities to provide a review of the facility design, and environmental control requirements of USP Chapter <797> and the NIOSH Alert. The “Engineering Control Performance Verification” section of USP <797> is covered in detail. The specific certification procedures outlined in the Controlled Environment Testing Association’s (CETA) CAG-003 are also discussed and utilized for the course’s hands-on workshops. In addition, CAG-001-2005 and CAG-002-2006 will be examined and utilized for the certification of compounding aseptic isolators.

Participants Will Learn
• Sterile compounding facility design and environmental controls requirements
• How to establish cleanroom “state of control” points and “performance objective” parameters
• How facility design impacts test choices
• The difference between flow control / dilution control
• How to perform airflow smoke pattern testing
• How to perform viable and non-viable environmental sampling
• How to apply airflow measurement techniques for cleanrooms and calculate room air exchange rates
• How to develop strategies for room segregation testing
• Appropriate applications for mixed flow cleanrooms
• How to test compounding aseptic isolators to appropriate standards

This Course is For
Certifiers, cleanroom designers, cleanroom contractors and anyone involved with cleanrooms for sterile compounding.

Instructor Team
The lead instructor for this program is Jim Wagner, President, Controlled Environment Consulting. Other instructors include: Kym Faylor, President, Azzur Laboratories; Aaron Johnson, Engineering Test Supervisor, Baker; Jeff Smith, Manager of Controlled Environment Division, CECS, Inc. - Division of Steris

Registration
Tuition of $2395 must be paid in full to guarantee a space in the class. Tuition includes: course manual, lunch each day, an Eagleson Institute certificate and a special class reception and dinner with plenty of time to network with peers and instructors. Tuition does not include CETA Exam Fees.

Register online at www.eagleson.org/USP797, or call (207) 490-1076 to register or request a registration form.

Local Information & Lodging
This class is held at Critical Point in Tottowa, NJ. Blocks of rooms have been held at the following hotels:

<table>
<thead>
<tr>
<th>Date</th>
<th>Hotel</th>
<th>Price_Per_Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAY 16-20</td>
<td>Hilton Garden Inn (Wayne, NJ)</td>
<td>$159/ Night</td>
</tr>
<tr>
<td>OCT 24-28</td>
<td>Hilton Garden Inn (Wayne, NJ)</td>
<td>$159/ Night</td>
</tr>
</tbody>
</table>

CNBT Exam is Offered Immediately Following this Course. For More Information, contact CETA International
The course provides numerous opportunities for hands-on learning. Engaging class discussions allow participants to learn from each other. The guided tour of a BSC manufacturing facility provides a unique opportunity.

Course Description

This two-day course provides a comprehensive overview of Biological Safety Cabinets through lectures, demonstrations, and hands-on laboratory workshops.

Participants Will Learn

- How BSCs are constructed and function.
- How the types of BSCs vary from each other and from other laboratory ventilation equipment.
- What exhaust options exist for each type.
- Why HEPA filtration plays a key role in BSC operation.
- What factors influence BSC performance.
- How to use safety cabinets effectively.
- How performance envelopes are used to select a BSCs set point.
- When and how cabinet decontamination is performed.
- What hazards are associated with decontamination and certification.
- How to select the appropriate BSC for a specific application.

This Course is For

Biosafety officers, principal investigators, industrial hygienists, facility engineers, architects and certifiers. No previous knowledge is necessary.

Instructor Team

Instructors for this program include: Hannah Chabot, Design Engineer, Baker; Lance Gaudette, Engineering Technician, Baker; Ron Gingras, NSF-49 Accredited Certifier, Eagleson Institute; Tony Hawkins, Senior Service Technician, Air Techniques International; Bob Jones, Biological Safety Cabinet Certification Specialist, Eagleson Institute; Bryan Lavallee, Tech Support Supervisor, Baker; Larry McCarthy, Product Design Engineer, Baker; Charlie Quint, Mechanical Designer, Baker; Scott Semle, Vice President - Operations, Baker; Corey Smith, Design Engineer, Baker; Mary Ann Sondrini, EdM, Executive Director, Eagleson Institute; Dave Stuart, PhD, Consulting Microbiologist, Eagleson Institute.

Registration

Tuition of $995 must be paid in full to guarantee a space in the class. Tuition includes: course manual, lunch each day, an Eagleson Institute certificate and a special class reception and dinner with plenty of time to network with peers and instructors.

Register online at www.eagleson.org/SCT, or call (207) 490-1076 to register or request a registration form.

Local Information & Lodging

This class is held in our Sanford, Maine Training Facility. Blocks of rooms have been held at the following hotels:

- MAY 2-3: Kennebunkport Inn / Boathouse $85 / Night
- OCT 31 - NOV 1: Kennebunkport Inn / Boathouse $85 / Night

Refer to PAGE 15 for more Local and Hotel Information.
An opportunity for hands-on BSC certification practice, taught by experienced certifiers

Course Description
This half-day course reinforces the knowledge gained in our Safety Cabinet Technology course by providing hands-on practice.

Participants Will Learn
• How to follow NSF 49 and IEST RPs requirements and appropriate test procedures for BSC certification
• What test equipment is required for the tests
• How to develop a testing grid for a BSC
• How to evaluate BSC airflow using smoke visualization
• How to conduct a smoke pattern test
• How to conduct a site assessment
• How to perform airflow tests
• How to perform HEPA leak testing

This Course is For
Certifiers, industrial hygienists, and biosafety officers.

Instructor Team
The lead instructor for this program is Ron Gingras, NSF-49 Accredited Certifier, Eagleson Institute. Other instructors include: Tony Hawkins, Senior Service Technician, Air Techniques International; Bryan Lavallee, Tech Support Supervisor, Baker; Charlie Quint, Mechanical Designer, Baker

Registration
Tuition of $250 must be paid in full to guarantee a space in the class. Tuition includes: course manual, lunch and an Eagleson Institute certificate.

Prerequisite: This course must be taken in conjunction with Eagleson Institute’s Safety Cabinet Technology course. (PAGE 8)

Register online at www.eagleson.org/INTRO or call (207) 490-1076 to register or request a registration form.
HVAC Systems and Laboratory Design
MAY 5-6, 2016 • NOVEMBER 3-4, 2016

“Fume hoods and biosafety cabinets are the primary means of controlling hazardous exposures to laboratory personnel. Understanding the design process and how to evaluate laboratory HVAC systems is key to providing a healthy environment.” - Pam Greenley (Lead Instructor)

Course Description
This two-day introduction to the design and evaluation of laboratory HVAC systems combines lecture, class discussion, hands-on laboratory work, and group activities. Topics include: basic airflow principles; ventilation equipment exhaust requirements; OSHA, ANSI, ASHRAE and NFPA regulations; fume hood testing and laboratory controls. Real life laboratory construction and renovations are used as examples throughout the course. All course concepts come together in an activity in which participants learn the critical questions to ask when reviewing mechanical drawings.

Participants Will Learn
- Basic ventilation elements, terms and equations
- Basic principles of lab ventilation control
- The role of pressure relationships in lab design
- Types and sources of pressure losses in exhaust systems
- The key elements of building exhaust and stack design
- How OSHA, ANSI, ASHRAE, and NFPA regulations impact lab HVAC design
- Design requirements for fume hoods and BSCs
- Uses for various airflow measuring instruments
- How to take airflow and ventilation measurements
- How to conduct a fume hood survey
- Steps in the lab design process
- How to read mechanical drawings
- Questions to ask when reviewing mechanical drawings

This Course is For
Design engineers, architects, certifiers, industrial hygienists, safety officers, and facility engineers

Instructor Team
The lead instructor for this program is Pam Greenley, CIH, Associate Director, Environmental Health and Safety, Massachusetts Institute of Technology. Other instructors include: William Freeman, PE, LEED AP BD+C, Principal, Collaborative Engineering Solutions; Larry McCarthy, Product Design Engineer, Baker; Corey Smith, Design Engineer, Baker

Registration
Tuition of $995 must be paid in full to guarantee a space in the class. Tuition includes: course manual, lunch each day, an Eagleson Institute certificate and a special class reception with plenty of time to network with peers and instructors.

Register online at www.eagleson.org/HVAC, or call (207) 490-1076 to register or request a registration form.

Local Information & Lodging
This class is held in our Sanford, Maine Training Facility. Blocks of rooms have been held at the following hotels:

<table>
<thead>
<tr>
<th>Date</th>
<th>Hotel</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAY 5-6</td>
<td>Kennebunkport Inn / Boathouse</td>
<td>$85</td>
</tr>
<tr>
<td>NOV 3-4</td>
<td>Kennebunkport Inn / Boathouse</td>
<td>$85</td>
</tr>
</tbody>
</table>

Refer to PAGE 15 for more Local and Hotel Information.
Participants are able to take part in a real ASHRAE 110 test

Course Description

This half-day course uses lecture and demonstration to provide an overview of the ANSI/ASHRAE Standard 110-1995 method for testing laboratory fume hood performance. The standard uses airflow measurements, qualitative smoke studies and quantitative tracer gas procedures to determine a hood performance rating. Instrumentation, apparatus requirements, practical considerations and reporting results are discussed. An ASHRAE 110 test is performed in a demonstration laboratory.

Participants Will Learn

- The scope and purpose of the ASHRAE 110 test method
- What equipment is needed for the test
- How to report and interpret hood test results
- How to perform the procedures specified in the test method

This Course is For

Certifiers, industrial hygienists, and biosafety officers.

Instructor Team

Instructors for this program include: Pam Greenley, CIH, Associate Director, Environmental Health and Safety, Massachusetts Institute of Technology or Jack Price, PE, CIH, CSP, Director, Environmental Health and Safety, Northeastern University

Registration

Tuition of $250 must be paid in full to guarantee a space in the class. Tuition includes: course manual, lunch and an Eagleson Institute certificate.

Prerequisite: This course must be taken in conjunction with Eagleson Institute's HVAC Systems and Laboratory Design course.

Register online at www.eagleson.org/ASHRAE or call (207) 490-1076 to register or request a registration form.

Join us for the Week

This class is part of our Maine Seminar Series in the Spring and Fall. Join us for the entire week and save $200 (Online, Use Promo Code: MAINE)

Safety Cabinet Technology: MAY 2-3 • OCT 31-NOV 1
Introduction to Certification: MAY 4 • NOV 2
ASHRAE 110 Testing: MAY 4 • NOV 2
HVAC Systems & Lab Design: MAY 5-6 • NOV 3-4
Testing HEPA Filtered Systems and Cleanrooms
JUNE 6-9, 2016 • OCTOBER 17-20, 2016

“People with varying amounts of experience, both managers and technicians, gather together with a common interest in learning the science of testing HEPA filters.” - Dan Milholland (Lead Instructor)

Course Description
This four-day class provides the knowledge and hands-on experience needed to be able to test HEPA filters in clean benches, clean rooms, and HVAC systems according to the relevant ISO and IEST standards.

Participants Will Learn
• Airflow definitions and equations used in testing HEPA filters
• How to handle and store HEPA filters
• How to identify different types and classes of filters
• How to measure airflow in clean benches, cleanrooms, and HVAC systems
• How to perform airflow visualization
• The theory and operation of photometers and particle counters
• How to verify a room’s cleanliness classification
• How to repair HEPA filter media and gasket leaks
• How to perform HEPA testing in accordance with ISO 14644-1, ISO 14644-2, IEST RP34, IEST RP006, IEST RP001, IEST RP002 and the FDA CGMP Guide

This Course is For
Validation, quality assurance and contamination control personnel, facility engineers, maintenance personnel, cleanroom certifiers, and architects and engineers involved in cleanroom design.

Instructor Team
The lead instructor for this program is Dan Milholland, Consultant, Milholland and Associates. Other instructors include: Lewis Exner, Certification Division Manager, Micro-Clean, Inc.; Ron Gingras, NSF-49 Accredited Certifier, Eagleson Institute; Tony Hawkins, Senior Service Technician, Air Techniques International; Aaron Johnson, Engineering Test Supervisor, Baker; David Phillips, Technical Applications Specialist, Thermo Fisher Scientific; Dave Stuart, PhD, Consulting Microbiologist, Eagleson Institute

Registration
Tuition of $1695 must be paid in full to guarantee a space in the class. Tuition includes: course manual, lunch each day, an Eagleson Institute certificate and a special class reception and dinner with plenty of time to network with peers and instructors.

Register online at www.eagleson.org/HEPA or call (207) 490-1076 to register or request a registration form.

Local Information & Lodging
This class is held in our Sanford, Maine Training Facility. Blocks of rooms have been held at the following hotels:

<table>
<thead>
<tr>
<th>Date</th>
<th>Hotel</th>
<th>Price / Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUN 6-9</td>
<td>Kennebunkport Inn / Boathouse</td>
<td>$96 / Night</td>
</tr>
<tr>
<td>OCT 17-20</td>
<td>Kennebunkport Inn / Boathouse</td>
<td>$85 / Night</td>
</tr>
</tbody>
</table>

Refer to PAGE 15 for more Local and Hotel Information.
“This course is both academic and practical with a strong hands-on approach to enhance the learning process. Class activities and BSL3-specific tests are used to illustrate the principles of facility performance verification. The interactive nature of this course has made it a pleasure to teach.” - Dan Frasier (Lead Instructor)

Course Description

This two-day course focuses on the important considerations when commissioning and verifying the performance of ABSL3 and BSL3 laboratories. Participants spend one day in the classroom and a day in Eagleson’s training laboratory in hands-on workshops practicing the tests required to verify lab performance.

Participants Will Learn

• The relative roles of government guidance, industry best practices, and risk assessment related to commissioning and re-verification
• How to develop a performance verification process appropriate for their facilities
• How to test and verify system accuracy based on the facility’s risk assessment
• How to generate and critique biosafety facility commissioning and verification documents

This Course is For

Safety professionals, facility managers, HVAC engineers, facility engineers, controls contractors, system installers, certifiers, and air balancers.

Instructor Team

The lead instructors for this program are Dan Frasier, PE, CCP, Principal/Director of Commissioning Services, Cornerstone Commissioning and Paul Jennette, PE, RBP, Director of College Biocontainment Operations, Cornell University College of Veterinary Medicine. Other instructors include: Dan Cook, LEED AP, Commissioning Engineer, Cornerstone Commissioning; Ron Gingras, NSF-49 Accredited Certifier, Eagleson Institute

Registration

Tuition of $995 must be paid in full to guarantee a space in the class. Tuition includes: course manual, lunch each day, an Eagleson Institute certificate and a special class reception and dinner with plenty of time to network with peers and instructors.

This is an advanced class; knowledge of HVAC systems and biosafety are strongly recommended.

Register online at www.eagleson.org/VERIFYBSL3 or call (207) 490-1076 to register or request a registration form.

Local Information & Lodging

This class is held in our Sanford, Maine Training Facility. A block of rooms has been held at the following hotels:

SEP 29-30 Kennebunkport Inn / Boathouse $121 / Night

Refer to PAGE 15 for more Local and Hotel Information.
The Eagleson Institute's Biological Safety Cabinet (BSC) Certification Program consists of two phases with an additional (optional) third component.

Part I: Two weeks training at Eagleson Institute on Class II Type A BSCs

Part II: Two weeks advanced training at Eagleson Institute, including trouble-shooting, repair, and certification of Class II Type B BSCs

Part III: In-house mentoring and evaluation by an Eagleson Institute instructor (optional)

Students who participate in this program receive training in the following areas:

- How BSCs are constructed and function
- BSC types and exhaust requirements
- How to use BSCs effectively
- How to follow NSF 49 and EN 12469 test procedures for BSC certification
- Developing a testing grid for BSCs
- Performing inflow and downflow airflow tests
- Evaluating BSC airflow using smoke pattern tests
- Conducting a site assessment
- Performing HEPA leak testing
- Determining when and how to decontaminate a BSC
- Troubleshooting BSCs
- Balancing BSC airflow
- Repairing leaks in HEPA filters
- Changing HEPA filters
- Teaching others to use BSCs effectively

Part I

MAY 2-6, 2016

- Safety Cabinet Technology (2 Day Course)
- Introduction to Certification (Half-Day Workshop)
- Decontamination (Half-Day Workshop)
- HVAC Systems & Laboratory Design (2 Day Course)

MAY 9-13, 2016

- Personalized Hands-On Testing Workshop (5-Days)

Part I Total

$5165

Part II

FEBRUARY 22-26, 2016 • SEPTEMBER 12-16, 2016

- Personalized Hands-On Testing Workshop (5-Days)

FEB 29-MARCH 4, 2016 • SEPTEMBER 19-23, 2016

- Advanced Certification

Part II Total

$4870

Part III

In-house Mentoring and Evaluation by an Eagleson Institute Instructor Call for Pricing

Note: If you opt to be NSF accredited, the exams are offered at the Eagleson Institute. Arrangements need to be made through NSF International. NSF Exam Fees are not included in cost of the workshops.
Local Information

Airports

PWM | Portland International Jetport
31 Miles North East • www.portlandjetport.org

MHT | Manchester Boston Regional Airport
76 Miles South West • www.flymanchester.com

BOS | Logan International Airport
83 Miles South • www.massport.com

Directions

We recommend renting a vehicle, as the class location is approximately 15 miles from area hotels.

Our physical address is 161-175 Gatehouse Road, Sanford, ME 04073. Directions via Google: http://g.co/maps/p4ud3

Cancellation Policy

Individuals who cancel more than 15 business days prior to the class date will receive a full refund. For cancellations made 6 to 15 business days before the start of the program, a 50% refund will be given. For cancellations made 5 business days or less prior to the class date, no refunds will be given. Notification of cancellation must be received in writing. Substitutes for a registered attendee may be made at anytime.

Lodging

For all classes held at our Sanford, Maine training facility, blocks of rooms have been held at the Kennebunkport Inn and Boathouse hotels in Kennebunkport, Maine.